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Abstract

The predicted shift to non-volatile, byte-addressable
memory (e.g., Phase Change Memory and Memristor),
the growth of “big data”, and the subsequent emergence
of frameworks such as memcached and NoSQL systems
require us to rethink the design of data stores. To de-
rive the maximum performance from these new mem-
ory technologies, this paper proposes the use of single-
level data stores. For these systems, where no distinc-
tion is made between a volatile and a persistent copy of
data, we present Consistent and Durable Data Structures
(CDDSs) that, on current hardware, allows programmers
to safely exploit the low-latency and non-volatile as-
pects of new memory technologies. CDDSs use version-
ing to allow atomic updates without requiring logging.
The same versioning scheme also enables rollback for
failure recovery. When compared to a memory-backed
Berkeley DB B-Tree, our prototype-based results show
that a CDDS B-Tree can increase put and get through-
put by 74% and 138%. When compared to Cassandra,
a two-level data store, Tembo, a CDDS B-Tree enabled
distributed Key-Value system, increases throughput by
up to 250%–286%.

1 Introduction

Recent architecture trends and our conversations with
memory vendors show that DRAM density scaling is fac-
ing significant challenges and will hit a scalability wall
beyond 40nm [26, 33, 34]. Additionally, power con-
straints will also limit the amount of DRAM installed in
future systems [5, 19]. To support next generation sys-
tems, including large memory-backed data stores such
as memcached [18] and RAMCloud [38], technologies
such as Phase Change Memory [40] and Memristor [48]
hold promise as DRAM replacements. Described in Sec-
tion 2, these memories offer latencies that are compara-
ble to DRAM and are orders of magnitude faster than ei-

ther disk or flash. Not only are they byte-addressable and
low-latency like DRAM but, they are also non-volatile.

Projected cost [19] and power-efficiency characteris-
tics of Non-Volatile Byte-addressable Memory (NVBM)
lead us to believe that it can replace both disk and mem-
ory in data stores (e.g., memcached, database systems,
NoSQL systems, etc.) but not through legacy inter-
faces (e.g., block interfaces or file systems). First, the
overhead of PCI accesses or system calls will dominate
NVBM’s sub-microsecond access latencies. More im-
portantly, these interfaces impose a two-level logical sep-
aration of data, differentiating between in-memory and
on-disk copies. Traditional data stores have to both up-
date the in-memory data and, for durability, sync the data
to disk with the help of a write-ahead log. Not only does
this data movement use extra power [5] and reduce per-
formance for low-latency NVBM, the logical separation
also reduces the usable capacity of an NVBM system.

Instead, we propose a single-level NVBM hierarchy
where no distinction is made between a volatile and a
persistent copy of data. In particular, we propose the use
of Consistent and Durable Data Structures (CDDSs) to
store data, a design that allows for the creation of log-
less systems on non-volatile memory without processor
modifications. Described in Section 3, these data struc-
tures allow mutations to be safely performed directly
(using loads and stores) on the single copy of the data
and metadata. We have architected CDDSs to use ver-
sioning. Independent of the update size, versioning al-
lows the CDDS to atomically move from one consis-
tent state to the next, without the extra writes required
by logging or shadow paging. Failure recovery simply
restores the data structure to the most recent consistent
version. Further, while complex processor changes to
support NVBM have been proposed [14], we show how
primitives to provide durability and consistency can be
created using existing processors.

We have implemented a CDDS B-Tree because of its
non-trivial implementation complexity and widespread



use in storage systems. Our evaluation, presented in
Section 4, shows that a CDDS B-Tree can increase put
and get throughput by 74% and 138% when compared
to a memory-backed Berkeley DB B-Tree. Tembo1, our
Key-Value (KV) store described in Section 3.5, was cre-
ated by integrating this CDDS B-Tree into a widely-used
open-source KV system. Using the Yahoo Cloud Serv-
ing Benchmark [15], we observed that Tembo increases
throughput by up to 250%–286% when compared to
memory-backed Cassandra, a two-level data store.

2 Background and Related Work

2.1 Hardware Non-Volatile Memory

Significant changes are expected in the memory indus-
try. Non-volatile flash memories have seen widespread
adoption in consumer electronics and are starting to gain
adoption in the enterprise market [20]. Recently, new
NVBM memory technologies (e.g., PCM, Memristor,
and STTRAM) have been demonstrated that significantly
improve latency and energy efficiency compared to flash.

As an illustration, we discuss Phase Change Mem-
ory (PCM) [40], a promising NVBM technology. PCM
is a non-volatile memory built out of Chalcogenide-
based materials (e.g., alloys of germanium, antimony,
or tellurium). Unlike DRAM and flash that record data
through charge storage, PCM uses distinct phase change
material states (corresponding to resistances) to store val-
ues. Specifically, when heated to a high temperature for
an extended period of time, the materials crystallize and
reduce their resistance. To reset the resistance, a current
large enough to melt the phase change material is applied
for a short period and then abruptly cut-off to quench the
material into the amorphous phase. The two resistance
states correspond to a ‘0’ and ‘1’, but, by varying the
pulse width of the reset current, one can partially crystal-
lize the phase change material and modify the resistance
to an intermediate value between the ‘0’ and ‘1’ resis-
tances. This range of resistances enables multiple bits
per cell, and the projected availability of these MLC de-
signs is 2012 [25].

Table 1 summarizes key attributes of potential stor-
age alternatives in the next decade, with projected data
from recent publications, technology trends, and direct
industry communication. These trends suggest that fu-
ture non-volatile memories such as PCM or Memris-
tors can be viable DRAM replacements, achieving com-
petitive speeds with much lower power consumption,
and with non-volatility properties similar to disk but
without the power overhead. Additionally, a number
of recent studies have identified a slowing of DRAM

1Swahili for elephant, an animal anecdotally known for its memory.

growth [25, 26, 30, 33, 34, 39, 55] due to scaling chal-
lenges for charge-based memories. In conjunction with
DRAM’s power inefficiencies [5, 19], these trends can
potentially accelerate the adoption of NVBM memories.

NVBM technologies have traditionally been limited
by density and endurance, but recent trends suggest that
these limitations can be addressed. Increased density can
be achieved within a single-die through multi-level de-
signs, and, potentially, multiple-layers per die. At a sin-
gle chip level, 3D die stacking using through-silicon vias
(TSVs) for inter-die communication can further increase
density. PCM and Memristor also offer higher endurance
than flash (108 writes/cell compared to 105 writes/cell
for flash). Optimizations at the technology, circuit, and
systems levels have been shown to further address en-
durance issues, and more improvements are likely as the
technologies mature and gain widespread adoption.

These trends, combined with the attributes summa-
rized in Table 1, suggest that technologies like PCM and
Memristors can be used to provide a single “unified data-
store” layer - an assumption underpinning the system ar-
chitecture in our paper. Specifically, we assume a stor-
age system layer that provides disk-like functionality but
with memory-like performance characteristics and im-
proved energy efficiency. This layer is persistent and
byte-addressable. Additionally, to best take advantage
of the low-latency features of these emerging technolo-
gies, non-volatile memory is assumed to be accessed off
the memory bus. Like other systems [12, 14], we also as-
sume that the hardware can perform atomic 8 byte writes.

While our assumed architecture is future-looking, it
must be pointed out that many of these assumptions are
being validated individually. For example, PCM sam-
ples are already available (e.g., from Numonyx) and
an HP/Hynix collaboration [22] has been announced
to bring Memristor to market. In addition, aggressive
capacity roadmaps with multi-level cells and stacking
have been discussed by major memory vendors. Finally,
previously announced products have also allowed non-
volatile memory, albeit flash, to be accessed through the
memory bus [46].

2.2 File Systems

Traditional disk-based file systems are also faced with
the problem of performing atomic updates to data struc-
tures. File systems like WAFL [23] and ZFS [49] use
shadowing to perform atomic updates. Failure recovery
in these systems is implemented by restoring the file sys-
tem to a consistent snapshot that is taken periodically.
These snapshots are created by shadowing, where every
change to a block creates a new copy of the block. Re-
cently, Rodeh [42] presented a B-Tree construction that
can provide efficient support for shadowing and this tech-
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Technology Density Read/Write Latency Read/Write Energy Endurance
um2/bit ns pJ/bit writes/bit

HDD 0.00006 3,000,000 3,000,000 2,500 2,500 ∞

Flash SSD (SLC) 0.00210 25,000 200,000 250 250 105

DRAM (DIMM) 0.00380 55 55 24 24 1018

PCM 0.00580 48 150 2 20 108

Memristor 0.00580 100 100 2 2 108

Table 1: Non-Volatile Memory Characteristics: 2015 Projections

nique has been used in the design of BTRFS [37]. Failure
recovery in a CDDS uses a similar notion of restoring
the data structure to the most recent consistent version.
However the versioning scheme used in a CDDS results
in fewer data-copies when compared to shadowing.

2.3 Non-Volatile Memory-based Systems
The use of non-volatile memory to improve performance
is not new. eNVy [54] designed a non-volatile main
memory storage system using flash. eNVy, however, ac-
cessed memory on a page-granularity basis and could not
distinguish between temporary and permanent data. The
Rio File Cache [11, 32] used battery-backed DRAM to
emulate NVBM but it did not account for persistent data
residing in volatile CPU caches. Recently there have
been many efforts [21] to optimize data structures for
flash memory based systems. FD-Tree [31] and Buffer-
Hash [2] are examples of write-optimized data structures
designed to overcome high-latency of random writes,
while FAWN [3] presents an energy efficient system de-
sign for clusters using flash memory. However, design
choices that have been influenced by flash limitations
(e.g., block addressing and high-latency random writes)
render these systems suboptimal for NVBM.

Qureshi et al. [39] have also investigated combining
PCM and DRAM into a hybrid main-memory system
but do not use the non-volatile features of PCM. While
our work assumes that NVBM wear-leveling happens
at a lower layer [55], it is worth noting that versioning
can help wear-leveling as frequently written locations are
aged out and replaced by new versions. Most closely re-
lated is the work on NVTM [12] and BPFS [14]. NVTM,
a more general system than CDDS, adds STM-based [44]
durability to non-volatile memory. However, it requires
adoption of an STM-based programming model. Fur-
ther, because NVTM only uses a metadata log, it cannot
guarantee failure atomicity. BPFS, a PCM-based file sys-
tem, also proposes a single-level store. However, unlike
CDDS’s exclusive use of existing processor primitives,
BPFS depends on extensive hardware modifications to
provide correctness and durability. Further, unlike the
data structure interface proposed in this work, BPFS im-
plements a file system interface. While this is transparent
to legacy applications, the system-call overheads reduce
NVBM’s low-latency benefits.

2.4 Data Store Trends
The growth of “big data” [1] and the corresponding need
for scalable analytics has driven the creation of a num-
ber of different data stores today. Best exemplified by
NoSQL systems [9], the throughput and latency require-
ments of large web services, social networks, and social
media-based applications have been driving the design
of next-generation data stores. In terms of storage, high-
performance systems have started shifting from mag-
netic disks to flash over the last decade. Even more
recently, this shift has accelerated to the use of large
memory-backed data stores. Examples of the latter in-
clude memcached [18] clusters over 200 TB in size [28],
memory-backed systems such as RAMCloud [38], in-
memory databases [47, 52], and NoSQL systems such
as Redis [41]. As DRAM is volatile, these systems pro-
vide data durability using backend databases (e.g., mem-
cached/MySQL), on-disk logs (e.g., RAMCloud), or, for
systems with relaxed durability semantics, via periodic
checkpoints. We expect that these systems will easily
transition from being DRAM-based with separate persis-
tent storage to being NVBM-based.

3 Design and Implementation

As mentioned previously, we expect NVBM to be ex-
posed across a memory bus and not via a legacy disk
interface. Using the PCI interface (256 ns latency [24])
or even a kernel-based syscall API (89.2 and 76.4 ns for
POSIX read/write) would add significant overhead
to NVBM’s access latencies (50–150 ns). Further, given
the performance and energy cost of moving data, we be-
lieve that all data should reside in a single-level store
where no distinction is made between volatile and persis-
tent storage and all updates are performed in-place. We
therefore propose that data access should use userspace
libraries and APIs that map data into the process’s ad-
dress space.

However, the same properties that allow systems to
take full advantage of NVBM’s performance proper-
ties also introduce challenges. In particular, one of the
biggest obstacles is that current processors do not pro-
vide primitives to order memory writes. Combined with
the fact that the memory controller can reorder writes (at
a cache line granularity), current mechanisms for updat-
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ing data structures are likely to cause corruption in the
face of power or software failures. For example, assume
that a hash table insert requires the write of a new hash
table object and is followed by a pointer write linking
the new object to the hash table. A reordered write could
propagate the pointer to main memory before the object
and a failure at this stage would cause the pointer to link
to an undefined memory region. Processor modifications
for ordering can be complex [14], do not show up on
vendor roadmaps, and will likely be preceded by NVBM
availability.

To address these issues, our design and implemen-
tation focuses on three different layers. First, in Sec-
tion 3.1, we describe how we implement ordering and
flushing of data on existing processors. However, this
low-level primitive is not sufficient for atomic updates
larger than 8 bytes. In addition, we therefore also re-
quire versioning CDDSs, whose design principles are
described in Section 3.2. After discussing our CDDS B-
Tree implementation in Section 3.3 and some of the open
opportunities and challenges with CDDS data structures
in Section 3.4, Section 3.5 describes Tembo, the system
resulting from the integration of our CDDS B-Tree into
a distributed Key-Value system.

3.1 Flushing Data on Current Processors

As mentioned earlier, today’s processors have no mecha-
nism for preventing memory writes from reaching mem-
ory and doing so for arbitrarily large updates would be
infeasible. Similarly, there is no guarantee that writes
will not be reordered by either the processor or by the
memory controller. While processors support a mfence
instruction, it only provides write visibility and does not
guarantee that all memory writes are propagated to mem-
ory (NVBM in this case) or that the ordering of writes is
maintained. While cache contents can be flushed using
the wbinvd instruction, it is a high-overhead operation
(multiple ms per invocation) and flushes the instruction
cache and other unrelated cached data. While it is pos-
sible to mark specific memory regions as write-through,
this impacts write throughput as all stores have to wait
for the data to reach main memory.

To address this problem, we use a combination of
tracking recently written data and use of the mfence
and clflush instructions. clflush is an instruction
that invalidates the cache line containing a given mem-
ory address from all levels of the cache hierarchy, across
multiple processors. If the cache line is dirty (i.e., it has
uncommitted data), it is written to memory before inval-
idation. The clflush instruction is also ordered by the
mfence instruction. Therefore, to commit a series of
memory writes, we first execute an mfence as a barrier
to them, execute a clflush on every cacheline of all

modified memory regions that need to be committed to
persistent memory, and then execute another mfence.
In this paper, we refer to this instruction sequence as a
flush. As microbenchmarks in Section 4.2 show, us-
ing flush will be acceptable for most workloads.

While this description and tracking dirty memory
might seem complex, this was easy to implement in prac-
tice and can be abstracted away by macros or helper
functions. In particular, for data structures, all up-
dates occur behind an API and therefore the process of
flushing data to non-volatile memory is hidden from
the programmer. Using the simplified hash table example
described above, the implementation would first write
the object and flush it. Only after this would it write
the pointer value and then flush again. This two-step
process is transparent to the user as it occurs inside the
insert method.

Finally, one should note that while flush is neces-
sary for durability and consistency, it is not sufficient by
itself. If any metadata update (e.g., rebalancing a tree)
requires an atomic update greater than the 8 byte atomic
write provided by the hardware, a failure could leave it
in an inconsistent state. We therefore need the versioning
approach described below in Sections 3.2 and 3.3.

3.2 CDDS Overview
Given the challenges highlighted at the beginning of Sec-
tion 3, an ideal data store for non-volatile memory must
have the following properties:
• Durable: The data store should be durable. A fail-

stop failure should not lose committed data.
• Consistent: The data store should remain consis-

tent after every update operation. If a failure occurs
during an update, the data store must be restored to
a consistent state before further updates are applied.
• Scalable: The data store should scale to arbitrarily-

large sizes. When compared to traditional data
stores, any space, performance, or complexity over-
head should be minimal.
• Easy-to-Program: Using the data store should not

introduce undue complexity for programmers or un-
reasonable limitations to its use.

We believe it is possible to meet the above properties
by storing data in Consistent and Durable Data Struc-
tures (CDDSs), i.e., hardened versions of conventional
data structures currently used with volatile memory. The
ideas used in constructing a CDDS are applicable to a
wide variety of linked data structures and, in this paper,
we implement a CDDS B-Tree because of its non-trivial
implementation complexity and widespread use in stor-
age systems. We would like to note that the design and
implementation of a CDDS only addresses physical con-
sistency, i.e., ensuring that the data structure is readable
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Figure 1: Example of a CDDS B-Tree

and never left in a corrupt state. Higher-level layers con-
trol logical consistency, i.e., ensuring that the data stored
in the data structure is valid and matches external in-
tegrity constraints. Similarly, while our current system
implements a simple concurrency control scheme, we do
not mandate concurrency control to provide isolation as
it might be more efficient to do it at a higher layer.

A CDDS is built by maintaining a limited number of
versions of the data structure with the constraint that an
update should not weaken the structural integrity of an
older version and that updates are atomic. This version-
ing scheme allows a CDDS to provide consistency with-
out the additional overhead of logging or shadowing. A
CDDS thus provides a guarantee that a failure between
operations will never leave the data in an inconsistent
state. As a CDDS never acknowledges completion of
an update without safely committing it to non-volatile
memory, it also ensures that there is no silent data loss.

3.2.1 Versioning for Durability

Internally, a CDDS maintains the following properties:

• There exists a version number for the most recent
consistent version. This is used by any thread which
wishes to read from the data structure.
• Every update to the data structure results in the cre-

ation of a new version.
• During the update operation, modifications ensure

that existing data representing older versions are
never overwritten. Such modifications are per-
formed by either using atomic operations or copy-
on-write style changes.
• After all the modifications for an update have been

made persistent, the most recent consistent version
number is updated atomically.

3.2.2 Garbage Collection

Along with support for multiple versions, a CDDS also
tracks versions of the data structure that are being ac-
cessed. Knowing the oldest version which has a non-zero
reference count has two benefits. First, we can garbage
collect older versions of the data structure. Garbage col-
lection (GC) is run in the background and helps limit the

space utilization by eliminating data that will not be ref-
erenced in the future. Second, knowing the oldest active
version can also improve performance by enabling in-
telligent space reuse in a CDDS. When creating a new
entry, the CDDS can proactively reclaim the space used
by older inactive versions.

3.2.3 Failure Recovery

Insert or delete operations may be interrupted due to
operating system crashes or power failures. By defini-
tion, the most recent consistent version of the data struc-
ture should be accessible on recovery. However, an in-
progress update needs to be removed as it belongs to an
uncommitted version. We handle failures in a CDDS
by using a ‘forward garbage collection’ procedure dur-
ing recovery. This process involves discarding all up-
date operations which were executed after the most re-
cent consistent version. New entries created can be dis-
carded while older entries with in-progress update oper-
ations are reverted.

3.3 CDDS B-Trees
As an example of a CDDS, we selected the B-Tree [13]
data structure because of its widespread use in databases,
file systems, and storage systems. This section dis-
cusses the design and implementation of a consistent and
durable version of a B-Tree. Our B-Tree modifications2

have been heavily inspired by previous work on multi-
version data structures [4, 50]. However, our focus on
durability required changes to the design and impacted
our implementation. We also do not retain all previous
versions of the data structure and can therefore optimize
updates.

In a CDDS B-Tree node, shown in Figure 1, the key
and value stored in a B-Tree entry is augmented with a
start and end version number, represented by unsigned
64-bit integers. A B-Tree node is considered ‘live’ if it
has at least one live entry. In turn, an entry is considered
‘live’ if it does not have an end version (displayed as a
‘−’ in the figure). To bound space utilization, in addition
to ensuring that a minimum number of entries in a B-Tree
node are used, we also bound the minimum number of

2In reality, our B-Tree is a B+ Tree with values only stored in leaves.
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Algorithm 1: CDDS B-Tree Lookup
Input: k: key, r: root
Output: val: value
begin lookup(k, r)1

v← current version2
n← r3
while is inner node(n) do4

entry num← find(k, n, v)5
n← n[entry num].child6

entry num← find(k, n, v)7
return n[entry num].value8

end9

begin find(k, n, v)10
l← 011
h← get num entries(n)12
while l < h do // Binary Serch13

m← (l +h)/214
if k ≤ n[m].key then15

h← m−116

else l← m+117

while h < get num entries(n) do18
if n[h].start ≤ v then19

if n[h].end > v ‖ n[h].end = 0 then20
break21

h← h+122

return h23
end24

live entries in each node. Thus, while the CDDS B-Tree
API is identical to normal B-Trees, the implementation
differs significantly. In the rest of this section, we use the
lookup, insert, and delete operations to illustrate how the
CDDS B-Tree design guarantees consistency and dura-
bility3.

3.3.1 Lookup

We first briefly describe the lookup algorithm, shown in
Algorithm 1. For ease of explanation and brevity, the
pseudocode in this and following algorithms does not in-
clude all of the design details. The algorithm uses the
find function to recurse down the tree (lines 4–6) until
it finds the leaf node with the correct key and value.

Consider a lookup for the key 10 in the CDDS B-Tree
shown in Figure 1. After determining the most current
version (version 9, line 2), we start from the root node
and pick the rightmost entry with key 99 as it is the next
largest valid key. Similarly in the next level, we follow
the link from the leftmost entry and finally retrieve the
value for 10 from the leaf node.

Our implementation currently optimizes lookup per-
formance by ordering node entries by key first and
then by the start version number. This involves extra
writes during inserts to shift entries but improves read
performance by enabling a binary search within nodes

3A longer technical report [51] presents more details on all CDDS
B-Tree operations and their corresponding implementations.

Algorithm 2: CDDS B-Tree Insertion
Input: k: key, r: root
begin insert key(k, r)1

v← current version2
v′← v+13
// Recurse to leaf node (n)
y← get num entries(n)4
if y = node size then // Node Full5

if entry num = can reuse version(n,y) then6
n[entry num].key← k7
n[entry num].start← v′8
n[entry num].end← 09
flush(n[entry num])10

else11
split insert(n, k, v′)12
// Update inner nodes

else13
n[y].key← k14
n[y].start← v′15
n[y].end← 016
flush(n[y])17

current version← v′18
flush(current version)19

end20

begin split insert(n, k, v)21
l← num live entries(n)22
ml ← min live entries23
if l > 4∗ml then24

nn1← new node25
nn2← new node26
for i = 1 to l/2 do27

insert(nn1,n[i].key,v)28

for i = l/2+1 to l do29
insert(nn2,n[i].key,v)30

if k < n[l/2].key then31
insert(nn1,k,v)32

else insert(nn2,k,v)33
flush(nn1,nn2)34

else35
nn← new node36
for i = 1 to l do37

insert(nn,n[i].key,v)38

insert(nn,k,v)39
flush(nn)40

for i = 1 to l do41
n[i].end← v42

flush(n)43
end44

(lines 13–17 in find). While we have an alternate im-
plementation that optimizes writes by not ordering keys
at the cost of higher lookup latencies, we do not use it
as our target workloads are read-intensive. Finally, once
we detect the right index in the node, we ensure that we
are returning a version that was valid for v, the requested
version number (lines 18–22).
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3.3.2 Insertion

The algorithm for inserting a key into a CDDS B-Tree
is shown in Algorithm 2. Our implementation of the
algorithm uses the flush operation (described in Sec-
tion 3.1) to perform atomic operations on a cacheline.
Consider the case where a key, 12, is inserted into the
B-Tree shown in Figure 1. First, an algorithm similar
to lookup is used to find the leaf node that contains the
key range that 12 belongs to. In this case, the right-most
leaf node is selected. As shown in lines 2–3, the cur-
rent consistent version is read and a new version number
is generated. As the leaf node is full, we first use the
can reuse version function to check if an existing
dead entry can be reused. In this case, the entry with key
15 died at version 8 and is reused. To reuse a slot we
first remove the key from the node and shift the entries
to maintain them in sorted order. Now we insert the new
key and again shift entries as required. For each key shift,
we ensure that the data is first flushed to another slot
before it is overwritten. This ensures that the safety prop-
erties specified in Section 3.2.1 are not violated. While
not described in the algorithm, if an empty entry was de-
tected in the node, it would be used and the order of the
keys, as specified in Section 3.3.1, would be maintained.

If no free or dead entry was found, a split insert,
similar to a traditional B-Tree split, would be performed.
split insert is a copy-on-write style operation in
which existing entries are copied before making a mod-
ification. As an example, consider the node shown in
Figure 2, where the key 40 is being inserted. We only
need to preserve the ‘live’ entries for further updates and
split insert creates one or two new nodes based on
the number of live entries present. Note that setting the
end version (lines 41–42) is the only change made to the
existing leaf node. This ensures that older data versions
are not affected by failures. In this case, two new nodes
are created at the end of the split.

The inner nodes are now updated with links to the
newly created leaf nodes and the parent entries of the
now-dead nodes are also marked as dead. A similar
procedure is followed for inserting entries into the inner
nodes. When the root node of a tree overflows, we split
the node using the split insert function and create
one or two new nodes. We then create a new root node
with links to the old root and to the newly created split-
nodes. The pointer to the root node is updated atomically
to ensure safety.

Once all the changes have been flushed to persistent
storage, the current consistent version is update atomi-
cally (lines 18–19). At this point, the update has been
successfully committed to the NVBM and failures will
not result in the update being lost.
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Figure 2: CDDS node split during insertion
Algorithm 3: CDDS B-Tree Deletion

Input: k: key, r: root
begin delete(k, r)1

v← current version2
v′← v+13
// Recurse to leaf node (n)
y← find entry(n, k)4
n[y].end← v′5
l← num live entries(n)6
if l = ml then // Underflow7

s← pick sibling(n)8
ls← num live entries(s)9
if ls > 3×ml then10

copy from sibling(n, s, v′)11

else merge with sibling(n, s, v′)12
// Update inner nodes

else flush(n[y])13
current version← v′14
flush(current version)15

end16

begin merge with sibling(n, s, v)17
y← get num entries(s)18
if y < 4×ml then19

for i = 1 to ml do20
insert(s,n[i].key,v)21
n[i].end← v22

else23
nn← new node24
ls← num live entries(s)25
for i = 1 to ls do26

insert(nn,s[i].key,v)27
s[i].end← v28

for i = 1 to ml do29
insert(nn,n[i].key,v)30
n[i].end← v31

flush(nn)32

flush(n,s)33
end34

begin copy from sibling(n, s, v)35
// Omitted for brevity

end36

3.3.3 Deletion

Deleting an entry is conceptually simple as it simply in-
volves setting the end version number for the given key.
It does not require deleting any data as that is handled
by GC. However, in order to bound the number of live
blocks in the B-Tree and improve space utilization, we
shift live entries if the number of live entries per node
reaches ml , a threshold defined in Section 3.3.6. The only
exception is the root node as, due to a lack of siblings,
shifting within the same level is not feasible. However,
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Figure 3: CDDS node merge during deletion
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Figure 4: CDDS B-Tree after Garbage Collection

as described in Section 3.3.4, if the root only contains
one live entry, the child will be promoted.

As shown in Algorithm 3, we first check if the sibling
has at least 3×ml live entries and, if so, we copy ml live
entries from the sibling to form a new node. As the leaf
has ml live entries, the new node will have 2×ml live
entries. If that is not the case, we check if the sibling
has enough space to copy the live entries. Otherwise,
as shown in Figure 3, we merge the two nodes to create
a new node containing the live entries from the leaf and
sibling nodes. The number of live entries in the new node
will be≥ 2×ml . The inner nodes are updated with point-
ers to the newly created nodes and, after the changes have
been flushed to persistent memory, the current consistent
version is incremented.

3.3.4 Garbage Collection

As shown in Section 3.3.3, the size of the B-Tree does
not decrease when keys are deleted and can increase
due to the creation of new nodes. To reduce the space
overhead, we therefore use a periodic GC procedure,
currently implemented using a mark-and-sweep garbage
collector [8]. The GC procedure first selects the latest
version number that can be safely garbage collected. It
then starts from the root of the B-Tree and deletes nodes
which contain dead and unreferenced entries by inval-
idating the parent pointer to the deleted node. If the
root node contains only one live entry after garbage col-
lection, the child pointed to by the entry is promoted.
This helps reduce the height of the B-Tree. As seen in
the transformation of Figure 1 to the reduced-height tree
shown in Figure 4, only live nodes are present after GC.

3.3.5 Failure Recovery

The recovery procedure for the B-Tree is similar to
garbage collection. In this case, nodes newer than the
more recent consistent version are removed and older
nodes are recursively analyzed for partial updates. The
recovery function performs a physical ‘undo’ of these

updates and ensures that the tree is physically and log-
ically identical to the most recent consistent version.
While our current recovery implementation scans the en-
tire data structure, the recovery process is fast as it op-
erates at memory bandwidth speeds and only needs to
verify CDDS metadata.

3.3.6 Space Analysis

In the CDDS B-Tree, space utilization can be character-
ized by the number of live blocks required to store N
key-value pairs. Since the values are only stored in the
leaf nodes, we analyze the maximum number of live leaf
nodes present in the tree. In the CDDS B-Tree, a new
node is created by an insert or delete operation. As de-
scribed in Sections 3.3.2 and 3.3.3, the minimum number
of live entries in new nodes is 2×ml .

When the number of live entries in a node reaches ml ,
it is either merged with a sibling node or its live entries
are copied to a new node. Hence, the number of live
entries in a node is > ml . Therefore, in a B-Tree with
N live keys, the maximum number of live leaf nodes is
bound by O( N

ml
). Choosing ml as k

5 , where k is the size of
a B-Tree node, the maximum number of live leaf nodes
is O( 5N

k ).
For each live leaf node, there is a corresponding en-

try in the parent node. Since the number of live en-
tries in an inner node is also > ml , the number of parent

nodes required is O
(

5N
k

ml

)
= O( N

( k
5 )2 ). Extending this,

we can see that the height of the CDDS B-Tree is bound
by O(log k

5
N). This also bounds the time for all B-Tree

operations.

3.4 CDDS Discussion

Apart from the CDDS B-Tree operations described
above, the implementation also supports additional fea-
tures including iterators and range scans. We believe that
CDDS versioning also lends itself to other powerful fea-
tures such as instant snapshots, rollback for programmer
recovery, and integrated NVBM wear-leveling. We hope
to explore these issues in our future work.

We also do not anticipate the design of a CDDS
preventing the implementation of different concurrency
schemes. Our current CDDS B-Tree implementation
uses a multiple-reader, single-writer model. However,
the use of versioning lends itself to more complex con-
currency control schemes including multi-version con-
currency control (MVCC) [6]. While beyond the scope
of this paper, exploring different concurrency control
schemes for CDDSs is a part of our future work.

CDDS-based systems currently depend on virtual
memory mechanisms to provide fault-isolation and like

8



other services, it depends on the OS for safety. There-
fore, while unlikely, placing NVBM on the memory bus
can expose it to accidental writes from rogue DMAs.
In contrast, the narrow traditional block device interface
makes it harder to accidentally corrupt data. We believe
that hardware memory protection, similar to IOMMUs,
will be required to address this problem. Given that we
map data into an application’s address space, stray writes
from a buggy application could also destroy data. While
this is no different from current applications that mmap
their data, we are developing lightweight persistent heaps
that use virtual memory protection with a RVM-style
API [43] to provide improved data safety.

Finally, apart from multi-version data structures [4,
50], CDDSs have also been influenced by Persistent Data
Structures (PDSs) [17]. The “Persistent” in PDS does
not actually denote durability on persistent storage but,
instead, represents immutable data structures where an
update always yields a new data structure copy and never
modifies previous versions. The CDDS B-Tree presented
above is a weakened form of semi-persistent data struc-
tures. We modify previous versions of the data struc-
ture for efficiency but are guaranteed to recover from
failure and rollback to a consistent state. However, the
PDS concepts are applicable, in theory, to all linked data
structures. Using PDS-style techniques, we have imple-
mented a proof-of-concept CDDS hash table and, as ev-
idenced by previous work for functional programming
languages [35], we are confident that CDDS versioning
techniques can be extended to a wide range of data struc-
tures.

3.5 Tembo: A CDDS Key-Value Store

We created Tembo, a CDDS Key-Value (KV) store, to
evaluate the effectiveness of a CDDS-based data store.
The system involves the integration of the CDDS-based
B-Tree described in Section 3.3 into Redis [41], a widely
used event-driven KV store. As our contribution is not
based around the design of this KV system, we only
briefly describe Tembo in this section. As shown in Sec-
tion 4.4, the integration effort was minor and leads us to
believe that retrofitting CDDS into existing applications
will be straightforward.

The base architecture of Redis is well suited for a
CDDS as it retains the entire data set in RAM. This also
allows an unmodified Redis to serve as an appropriate
performance baseline. While persistence in the original
system was provided by a write-ahead append-only log,
this is eliminated in Tembo because of the CDDS B-Tree
integration. For fault-tolerance, Tembo provides master-
slave replication with support for hierarchical replication
trees where a slave can act as the master for other repli-
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cas. Consistent hashing [27] is used by client libraries to
distribute data in a Tembo cluster.

4 Evaluation

In this section, we evaluate our design choices in build-
ing Consistent and Durable Data Structures. First, we
measure the overhead associated with techniques used to
achieve durability on existing processors. We then com-
pare the CDDS B-tree to Berkeley DB and against log-
based schemes. After briefly discussing CDDS imple-
mentation and integration complexity, we present results
from a multi-node distributed experiment where we use
the Yahoo Cloud Serving Benchmark (YCSB) [15].

4.1 Evaluation Setup

As NVBM is not commercially available yet, we used
DRAM-based servers. While others [14] have shown
that DRAM-based results are a good predictor of NVBM
performance, as a part of our ongoing work, we aim
to run micro-architectural simulations to confirm this
within the context of our work. Our testbed consisted
of 15 servers with two Intel Xeon Quad-Core 2.67 GHz
(X5550) processors and 48 GB RAM each. The ma-
chines were connected via a full-bisection Gigabit Eth-
ernet network. Each processor has 128 KB L1, 256 KB
L2, and 8 MB L3 caches. While each server contained
8 300 GB 10K SAS drives, unless specified, all experi-
ments were run directly on RAM or on a ramdisk. We
used the Ubuntu 10.04 Linux distribution and the 2.6.32-
24 64-bit kernel.

4.2 Flush Performance

To accurately capture the performance of the flush
operation defined in Section 3.1, we used the “Mult-
CallFlushLRU” methodology [53]. The experiment al-
locates 64 MB of memory and subdivides it into equally-
sized cache-aligned objects. Object sizes ranged from
64 bytes to 64 MB. We write to every cache line in an
object, flush the entire object, and then repeat the pro-
cess with the next object. For improved timing accuracy,
we stride over the memory region multiple times.
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Figure 7: Berkeley DB Comparison

Remembering that each flush is a number of
clflushes bracketed by mfences on both sides, Fig-
ure 5 shows the number of clflushes executed per sec-
ond. Flushing small objects sees the worst performance
(∼12M cacheline flushes/sec for 64 byte objects). For
larger objects (256 bytes–8 MB), the performance ranges
from ∼16M–20M cacheline flushes/sec.

We also observed an unexpected drop in performance
for large objects (>8 MB). Our analysis showed that
this was due to the cache coherency protocol. Large
objects are likely to be evicted from the L3 cache be-
fore they are explicitly flushed. A subsequent clflush
would miss in the local cache and cause a high-latency
“snoop” request that checks the second off-socket pro-
cessor for the given cache line. As measured by the
UNC SNP RESP TO REMOTE HOME.I STATE per-
formance counter, seen in Figure 6, the second socket
shows a corresponding spike in requests for cache lines
that it does not contain. To verify this, we physically re-
moved a processor and observed that the anomaly disap-
peared4. Further, as we could not replicate this slowdown
on AMD platforms, we believe that cache-coherency
protocol modifications can address this anomaly.

Overall, the results show that we can flush 0.72–
1.19 GB/s on current processors. For applications with-
out networking, Section 4.3 shows that future hardware
support can help but applications using flush can still
outperform applications that use file system sync calls.
Distributed applications are more likely to encounter net-
work bottlenecks before flush becomes an overhead.

4.3 API Microbenchmarks

This section compares the CDDS B-Tree performance
for puts, gets, and deletes to Berkeley DB’s (BDB) B-
Tree implementation [36]. For this experiment, we in-
sert, fetch, and then delete 1 million key-value tuples

4We did not have physical access to the experimental testbed and
ran the processor removal experiment on a different dual-socket Intel
Xeon (X5570) machine.

Lines of Code
Original STX B-Tree 2,110
CDDS Modifications 1,902

Redis (v2.0.0-rc4) 18,539
Tembo Modifications 321

Table 2: Lines of Code Modified

into each system. After each operation, we flush the
CPU cache to eliminate any variance due to cache con-
tents. Keys and values are 25 and 2048 bytes large. The
single-threaded benchmark driver runs in the same ad-
dress space as BDB and CDDS. BDB’s cache size was
set to 8 GB and could hold the entire data set in memory.
Further, we configure BDB to maintain its log files on an
in-memory partition.

We run both CDDS and BDB (v4.8) in durable and
volatile modes. For BDB volatile mode, we turn transac-
tions and logging off. For CDDS volatile mode, we turn
flushing off. Both systems in volatile mode can lose
or corrupt data and would not be used where durability is
required. We only present the volatile results to highlight
predicted performance if hardware support was available
and to discuss CDDS design tradeoffs.

The results, displayed in Figure 7, show that, for
memory-backed BDB in durable mode, the CDDS B-
Tree improves throughout by 74%, 138%, and 503% for
puts, gets, and deletes respectively. These gains come
from not using a log (extra writes) or the file system in-
terface (system call overhead). CDDS delete improve-
ment is larger than puts and gets because we do not delete
data immediately but simply mark it as dead and use GC
to free unreferenced memory. In results not presented
here, reducing the value size, and therefore the log size,
improves BDB performance but CDDS always performs
better.

If zero-overhead epoch-based hardware support [14]
was available, the CDDS volatile numbers show that per-
formance of puts and deletes would increase by 80% and
27% as flushes would never be on the critical path. We
do not observe any significant change for gets as the only
difference between the volatile and durable CDDS is that
the flush operations are converted into a noop.

We also notice that while volatile BDB throughput is
lower than durable CDDS for gets and dels by 52% and
41%, it is higher by 56% for puts. Puts are slower for the
CDDS B-Tree because of the work required to maintain
key ordering (described in Section 3.3.1), GC overhead,
and a slightly higher height due to nodes with a mixture
of live and dead entries. Volatile BDB throughput is also
higher than durable BDB but lower than volatile CDDS
for all operations.

Finally, to measure versioning overhead, we compared
the volatile CDDS B-Tree to a normal B-Tree [7]. While
not presented in Figure 7, volatile CDDS’s performance
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Figure 8: Versioning vs. Logging

was lower than the in-memory B-Tree by 24%, 13%, and
39% for puts, gets, and dels. This difference is similar to
other performance-optimized versioned B-trees [45].

4.4 Implementation Effort
The CDDS B-Tree started with the STX C++ B-Tree [7]
implementation but, as measured by sloccount and
shown in Table 2, the addition of versioning and NVBM
durability replaced 90% of the code. While the API
remained the same, the internal implementation differs
substantially. The integration with Redis to create Tembo
was simpler and only changed 1.7% of code and took
less than a day to integrate. Since the CDDS B-Tree
implements an interface similar to an STL Sorted Con-
tainer, we believe that integration with other systems
should also be simple. Overall, our experiences show
that while the initial implementation complexity is mod-
erately high, this only needs to be done once for a given
data structure. The subsequent integration into legacy or
new systems is straightforward.

4.5 Tembo Versioning vs. Redis Logging
Apart from the B-Tree specific logging performed by
BDB in Section 4.3, we also wanted to compare CDDS
versioning when integrated into Tembo to the write-
ahead log used by Redis in fully-durable mode. Redis
uses a hashtable and, as it is hard to compare hashta-
bles and tree-based data structures, we also replaced the
hashtable with the STX B-Tree. In this single-node ex-
periment, we used 6 Tembo or Redis data stores and 2
clients5. The write-ahead log for the Redis server was
stored on an in-memory partition mounted as tmpfs and
did not use the hard disk. Each client performed 1M in-
serts over the loopback interface.

The results, presented in Figure 8, show that as the
value size is increased, Tembo performs up to 30% better

5Being event-driven, both Redis and Tembo are single-threaded.
Therefore one data store (or client) is run per core in this experiment.
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Figure 9: YCSB: SessionStore

than Redis integrated with the STX B-Tree. While Re-
dis updates the in-memory data copy and also writes to
the append-only log, Tembo only updates a single copy.
While hashtable-based Redis is faster than Tembo for
256 byte values because of faster lookups, even with the
disadvantage of a tree-based structure, Tembo’s perfor-
mance is almost equivalent for 1 KB values and is 15%
faster for 4 KB values.

The results presented in this section are lower than the
improvements in Section 4.3 because of network latency
overhead. The fsync implementation in tmpfs also
does not explicitly flush modified cache lines to mem-
ory and is therefore biased against Tembo. We are work-
ing on modifications to the file system that will enable a
fairer comparison. Finally, some of the overhead is due
to maintaining ordering properties in the CDDS-based
B-Tree to support range scans - a feature not used in the
current implementation of Tembo.

4.6 End-to-End Comparison

For an end-to-end test, we used YCSB, a framework for
evaluating the performance of Key-Value, NoSQL, and
cloud storage systems [15]. In this experiment, we used
13 servers for the cluster and 2 servers as the clients.
We extended YCSB to support Tembo, and present re-
sults from two of YCSB’s workloads. Workload-A, re-
ferred to as SessionStore in this section, contains a 50:50
read:update mix and is representative of tracking recent
actions in an online user’s session. Workload-D, referred
to as StatusUpdates, has a 95:5 read:insert mix. It rep-
resents people updating their online status (e.g., Twitter
tweets or Facebook wall updates) and other users reading
them. Both workloads execute 2M operations on values
consisting of 10 columns with 100 byte fields.

We compare Tembo to Cassandra (v0.6.1) [29],
a distributed data store that borrows concepts from
BigTable [10] and Dynamo [16]. We used three differ-
ent Cassandra configurations in this experiment. The
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Figure 10: YCSB: StatusUpdates

first two used a ramdisk for storage but the first (Cassan-
dra/Mem/Durable) flushed its commit log before every
update while the second (Cassandra/Mem/Volatile) only
flushed the log every 10 seconds. For completeness, we
also configured Cassandra to use a disk as the backing
store (Cassandra/Disk/Durable).

Figure 9 presents the aggregate throughput for the
SessionStore benchmark. With 30 client threads,
Tembo’s throughput was 286% higher than memory-
backed durable Cassandra. Given Tembo and Cas-
sandra’s different design and implementation choices,
the experiment shows the overheads of Cassandra’s in-
memory “memtables,” on-disk “SSTables,” and a write-
ahead log, vs. Tembo’s single-level store. Disk-backed
Cassandra’s throughput was only 22–44% lower than the
memory-backed durable configuration. The large num-
ber of disks in our experimental setup and a 512 MB
battery-backed disk controller cache were responsible
for this better-than-expected disk performance. On a
different machine with fewer disks and a smaller con-
troller cache, disk-backed Cassandra bottlenecked with
10 client threads.

Figure 10 shows that, for the StatusUpdates workload,
Tembo’s throughput is up to 250% higher than memory-
backed durable Cassandra. Tembo’s improvement is
slightly lower than the SessionStore benchmark because
StatusUpdates insert operations update all 10 columns
for each value, while the SessionStore only selects one
random column to update. Finally, as the entire data set
can be cached in memory and inserts represent only 5%
of this workload, the different Cassandra configurations
have similar performance.

5 Conclusion and Future Work

Given the impending shift to non-volatile byte-
addressable memory, this work has presented Consistent
and Durable Data Structures (CDDSs), an architecture
that, without processor modifications, allows for the cre-

ation of log-less storage systems on NVBM. Our results
show that redesigning systems to support single-level
data stores will be critical in meeting the high-throughput
requirements of emerging applications.

We are currently also working on extending this work
in a number of directions. First, we plan on leverag-
ing the inbuilt CDDS versioning to support multi-version
concurrency control. We also aim to explore the use of
relaxed consistency to further optimize performance as
well as integration with virtual memory to provide bet-
ter safety against stray application writes. Finally, we
are investigating the integration of CDDS versioning and
wear-leveling for better performance.
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